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The Equilibrium Topography of Sputtered 
Amorphous Solids II 

G. CARTER,  d. S. COLLIGON,  M. d. NOBES 
Department of Electrical Engineering, University of Salford, Salford, M5 4WT, UK 

The sputtering of an amorphous solid is considered analytically and the equations of 
motion of the changing surface topography derived. 

These equations are solved to show that a steady state is reached only in conditions 
where the surface topography consists of planes aligned, either parallel or perpendicular 
to the direction of sputtering ion incidence. 

1. In troduct ion  
In an earlier communication [1], a theoretical 
model for the generation of an equilibrium 
topography of an amorphous, isotropic solid, 
sputtered by a beam of uniform density energetic 
heavy ions was developed. This model assumed 
that, for such a solid, the sputtering coefficient 
was only a function of the angle of incidence of 
the ion flux to the normal to the surface at any 
point on the surface, but a restriction was placed 
upon the motion of the surface perpendicular to 
the ion beam, in that pinning regions (e.g. 
dislocations, vertical generators, surface con- 
tamination, etc.) were included to inhibit the 
surface motion. In the present work, this 
restriction has been removed and the develop- 
ment of surface contours in an infinite surface 
are studied. In particular, the equilibrium states 
of  the contour are defined. 

2, T h e o r e t i c a l  Model  
As in the earlier study, we are considering the 
erosion of a solid amorphous, isotropic sub- 
stance, as a result of the ejection of atoms from 
the surface by an energetic heavy ion beam, or the 
phenomenon known as sputtering. The atomic 
details of the sputtering process are, at this stage, 
unimportant to the development of an erosion 
model, but again it must be pointed out that the 
model discounts surface rearrangement effects 
due to local irregularities in atomic density 
(ingrown occlusions), surface diffusion processes 
and redeposition of sputtered material. 

A sputtering coefficient S, is defined as the 
number of atoms of a solid ejected per incident 
ion. S depends on ion species and energy, target 
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material and other parameters, but once these 
are fixed S is a function only of 0 (the angle 
between the beam direction and the surface 
normal). 

S has a form which typically increases from 
So at 0 ~--0, to a maximum at 0 = • 0p and 
declines to zero at 0 = • 7r/2. 

Consider a beam of~  ions/sec striking an area 
A of a surface, at an angle 0 to the normal. Let 
n = atomic density of target. 

In a time 3t, let the surface erode by a distance 
Sr, in a direction perpendicular to the surface. 

Then the number of atoms ejected = nASr  
and, the number of atoms incident = ~3t. 
By definition, 

nA 3r nA cos0 ~r n Sr 
S _ _  - -  _ _  

~b ~t 'k cos0 St ~b cos0 ~t 

where q) is the incident flux density. 

Sr q~ 
" - So cos0 (1) . . ~  z r/ 

We now consider, for simplicity, the erosion 
of a surface generator lying in the xOy plane, with 
the beam of ions incident in the 0y direction. 

Let A and B be two adjacent points on an 
eroding surface with centre of curvature at O, 
which erode to A', B' where A A '  and BB'  are 
perpendicular to the tangents at A, B. (See fig. 1.) 

Then A A '  = q~/n (S  cos0)1 St and BB '  -~ qb/n 
(S cos0)2 St. I fA '  C is drawn parallel to AB,  then 

~b 0 00 
CB'  - -  - ( S  cos0) St .Sx  

n ~0 ~-x 

and A ' C  "" R ~O/Ox. Sx  . 
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Figure 1 Erosion of a surface generator by an ion flux. 

If  301 is the change in tangential angle from A 
to A' in time 31, then 

CB' ~t 
- 3 0 t  - -  ~ / n  ~-a ( S  cos0) 

= A ' C  - -  ~ 

o r  

~0~ ~ 0 
3t - nR ~0 (S cos0) (2) 

This expresses the rate of change of tangential 
angle, in the direction of the surface normal. 

Now consider 0 to be a function only of x and 
time. Then 

() a0 . 3 x +  -~ . 3 t  3 0 =  ~ x ~  

.'. 30/~t in any chosen direction 

1 
= R cos0 " ~--t + -b-} 

Let the chosen direction be the normal direction 

~b e(S cos0) 
�9 from equation 2 nR aO 

1 ~x ( a0 )  
- - R c o s 0 3 t  + -~ X 

116 

But from equation 1, the rate of change in the 
x co-ordinate of the point A is given by 

3x q5 
-- S cos0 sin0 

3t n 

a0) cb a(S cos0) cb 
"'" -~t x - -  nR aO nR S SinO 

aS 
- -  nR cos0 a--t? (3) 

This gives the apparent change of tangential 
angle with time in the beam direction. Substitut- 
ing for R yields the identity, 

a0 q> cos20 
- ~ x = n  ~ U x l  

o r  

~ 
x ~x i -- - n ~-0 (4) 

Now the contour of surface considered in the 
xOy plane can equally well be converted to a 
surface contour in a O/x frame of reference, and 
equation 4 indicates how the tangential angle 
varies with both spatial co-ordinate x and time t. 

Equation 4 is of the form of a progressive 
wave, with a velocity defined by the .ratio on the 
left hand side and can, in principle, be solved for 0 
as a function of x and r in which the wave 
velocity given by (q~/n) @S/aO) cos20 is itself a 
spatial and time dependent function. Such solu- 
tion requires a precise knowledge of the S - 0 
function and a solution technique would be to 
cast the velocity function in an appropriate 
Fourier (or Legendre) expansion and use trans- 
formmethods, togetherwith the initial conditions 
of 0, as a known function o f x  and t, to derive the 
transient solution. If  the surface contour is to be 
reproducible in space however, i.e. an equi- 
librium topography, then the velocity of the 
progressive wave must be constant for all x and t 
and one arrives at the condition for such 
equilibrium as 

q) aS 
- -  - cos20 = constant (5) 

n 

This still indicates, however, that 0 progresses 
with time in the x direction, i.e. the surface 
topography moves in a direction with a compon- 
ent perpendicular to the direction of ion inci- 
dence. 

One can state the more rigid requirement for 
equilibrium that the surface must be immobile in 
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the perpendicular direction, so that to a viewer, 
the only topographical change is parallel to the 
beam direction and none parallel to the surface. 
This condition requires that the constant velocity 
of progression in equation 5 is equal to zero, i.e. 

(b cos20 ~S - -  n ~ = 0 ( 6 )  

This result is immediately seen to be identical to 
that in the earlier work, where artificial suppres- 
sors of surface motion (e.g. pinning regions), were 
introduced. 

Equation 6 clearly indicates that for true 
equilibrium to have been achieved, then either 
cos0 = 0 (0 = i~v/2)  or OS/OO = 0 (0 = 0 or 

0~). The meaning of these results is that final 
equilibrium can be achieved only with planar 
surfaces at 0 = ~r/2 (vertical surface), 0 = 0 
(horizontal surface) or 0 = • 0~ (plane inclined 
at 0~ to the horizontal). Final equilibrium is not 
achieved however, by an arbitrary combination 
of these values of 0. Thus a combination of 
0 = 0 and 0 = ~/2 (horizontal and vertical steps) 
is an equilibrium situation as is a combination of 
0 = zr/2 and 0 = 0~ (a cone on a cylinder or 
conical pit below a cylindrical hole in three 
dimensions), but a simultaneous combination of  
~S/80 = 0 values (0 = 0 and 0~, e.g. horizontal 
surfaces with a plane or cone or conical pit of 
angle 0~) is not an equilibrium situation, since 
although the plane at 0~ alone remains constant 
in slope (i.e. the O/x contour does not move in 
space) it does have a velocity in the xOy plane of 
q~/n S(O~)cos0~ sin0~ which is unequal to the 
velocity (zero) of a horizontal plane. Thus the 
combination of a horizontal plane and a plane at 
0~ will move in the x direction and a trough with 
sides at angles 0~ will tend to widen, whilst a 
plateau with sides at 0~ will contract as the 
inclined planes move in opposite directions. 

In the absence of pinning regions, therefore, 
one concludes that only a horizontal, or a 
vertical plane or a combination of these, repre- 
sents true equilibrium. The presence of pinning 
regions (such as dislocations, surface contamin- 
ation) however, may lead to at least transitory 
surface structure, such as cones and pits. These 
results are summarised in fig. 2. 

It is to be noted that, if one defines equilibrium 
as allowing for progression of the surface in a 
direction perpendicular to the beam, then the 
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Figure 2 Stable and unstable surface configurations, 
(a) and (b) are stable, (c) unstable. 

criterion for this form of equilibrium is (riO~n) 
(?S/~O) cos20 = constant. The ~S/80 cos~0 
function is readily constructed from a given S - 0 
function and is a curve which crosses the 0 axis at 
0 = ~ 7r/2, 0, zk 0~. For (Chin) (0S/80) cos~0 to be 
equal to an arbitrary constant indicates hori- 
zontal cuts on this curve, in turn meaning that 
several values of 0 simultaneously satisfy the 
criterion. Thus, sets of intersecting planes (at 
values of 0 specified by the horizontal cuts) are 
equilibrium situations in this context, but as 
already noted these will sweep across the surface 
in the x direction. 

It is interesting to note that recently Bayly, in 
an unpublished study of the sputter etching of 
amorphous glass surfaces, has indeed observed 
the development of terraced (horizontal and 
vertical planes) structures and the enlargement of 
troughs as predicted by the above theory. 
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